
T

E

Xware _

Virtual Fonts: More Fun for Grand Wizards

y

Donald Knuth

Many writers to T

E

Xhax during the past year or

so have been struggling with interfaces between

di�ering font conventions. For example, there's

been a brisk correspondence about mixing oldstyle

digits with a caps-and-small-caps alphabet. Other

people despair of working with fonts supplied

by manufacturers like Autologic, Compugraphic,

Monotype, etc.; still others are afraid to leave the

limited accent capabilities of Computer Modern

for fonts containing letters that are individually

accented as they should be, because such fonts

are not readily available in a form that existing

T

E

X software understands.

y: Prof. Knuth, tym razem jeszcze nie pisze

specjalnie do biuletynu GUST, jest to przedruk

artykuªu, który ukazaª si¦ w TUGboat nr 11,

kwiecie« 1990 (str. 13{23).

Poniewa» tekst ÿVirtual Fonts: More Fun

for Grand Wizards" nie ukazaª si¦ w »adnej innej

formie pisanej, a dokªadniej, jest on oparty na

dokumentacji programów TVtoVP i VPtoVF czyli

na odpowiednich plikach *.web co oznacza, »e

za wyj¡tkiem dwóch stron wst¦pu reszt¦ mo»na

sobie wydrukowa¢ samemu | je»eli si¦ wie co

to jest i do czego sªu»y WEB. Poniewa» jednak

tylko niewielki odsetek u»ytkowników systemu T

E

X

korzysta jednocze±nie z systemu WEB (peªna nazwa:

The WEB System of Structured Documentation)

uznali±my za celowe przedrukowanie oryginalnego

tekstu prof. Knutha w biuletynie GUST.

Barbara Beeton, szefowa TUGboat-a, któr¡

mieli±my przyjemno±¢ pozna¢ na konferencji

ÿWord-wide window on T

E

X", Aston '93 bez

problemówudost¦pniªa nam plik ¹ródªowy artykuªu,

za co dzi¦kujemy.

Zamiast tªumaczenia w kolejnym tek±cie

przedstawiono kilka przykªadów praktycznego

wykorzystania fontów wirtualnych.

Red.

1994 GUST, Zeszyt 3 13

There is a much better way to solve such

problems than the remedies that have been

proposed in T

E

Xhax. This better way was �rst

realized by David Fuchs in 1983, when he installed

it in our DVI-to-APS software at Stanford (which

he also developed for commercial distribution by

ArborText). We used it, for example, to typeset my

article on Literate Programming for The Computer

Journal, using native Autologic fonts to match the

typography of that journal.

I was expecting David's strategy to become

widely known and adopted. But alas|and this has

really been the only signi�cant disappointment

I've had with respect to the way T

E

X has

been propagating around the world|nobody

else's DVI-to-X drivers have incorporated anything

resembling David's ideas, and T

E

Xhax contributors

have spilled gallons of electronic ink searching for

answers in the wrong direction.

The right direction is obvious once you've seen

it (although it wasn't obvious in 1983): All we need

is a good way to specify a mapping from T

E

X's

notion of a font character to a device's capabilities

for printing. Such a mapping was called a \virtual

font" by the AMS speakers at the TUG meetings

this past August. At that meeting I spoke briey

about the issue and voiced my hope that all

dvi drivers be upgraded within a year to add a

virtual font capability. Dave Rodgers of ArborText

announced that his company would make their WEB

routines for virtual font design freely available, and

I promised to edit them into a form that would

match the other programs in the standard T

E

Xware

distribution.

The preparation of T

E

X Version 3 and MF

Version 2 has taken me much longer than expected,

but at last I've been able to look closely at the

concept of virtual fonts. (The need for such fonts

is indeed much greater now than it was before,

because T

E

X's new multilingual capabilities are

signi�cantly more powerful only when suitable fonts

are available. Virtual fonts can easily be created to

meet these needs.)

After looking closely at David Fuchs's original

design, I decided to design a completely new

�le format that would carry his ideas further,

making the virtual font mechanism completely

device-independent; David's original code was very

APS-speci�c. Furthermore I decided to extend his

notions so that arbitrary dvi commands (including

rules and even specials) could be part of a virtual

font. The new �le format I've just designed is called

vf; it's easy for dvi drivers to read vf �les, because

vf format is similar to the pk and dvi formats they

already deal with.

The result is two new system routines

called VFtoVP and VPtoVF. These routines are

extensions of the old ones called TFtoPL and

PLtoTF; there's a property-list language called VPL

that extends the ordinary PL format so that virtual

fonts can be created easily.

In addition to implementing these routines, I've

also tested the ideas by verifying that virtual fonts

could be incorporated into Tom Rokicki's dvips

system without di�culty. I wrote a C program

(available from Tom) that converts Adobe afm

�les into virtual fonts for T

E

X; these virtual

fonts include almost all the characteristics of

Computer Modern text fonts (lacking only the

uppercase Greek and the dotless j) and they

include all the additional Adobe characters as

well. These virtual fonts even include all the

\composite characters" listed in the afm �le, from

`Aacute' to `zcaron'; such characters are available as

ligatures. For example, to get `Aacute' you type �rst

`acute' (which is character 19 = ^S in Computer

Modern font layout; it could also be character

194 = Meta-B if you're using an 8-bit keyboard

with the new T

E

X) followed by `A'. Using such

fonts, it's now easier for me to typeset European

language texts in Times-Roman and Helvetica

and Palatino than in Computer Modern! [But

with less than an hour's work I could make a

virtual font for Computer Modern that would do

the same things; I just haven't gotten around to it

yet.]

[A nice ligature scheme for dozens of European

languages was just published by Haralambous in

the November TUGboat. He uses only ASCII

characters, getting Aacute with the combination

<A. I could readily add his scheme to mine,

by adding a few lines to my vpl �les.

Indeed, multiple conventions can be supported

simultaneously (although I don't recommend that

really).]

Virtual fonts make it easy to go from dvi �les

to the font layouts of any manufacturer or font

supplier. They also (I'm sorry to say) make \track

kerning" easy, for people who have to resort to that

oft-abused feature of lead-free type.

14 GUST, Zeszyt 3 1994

Furthermore, virtual fonts solve the problem

of proofreading with screen fonts or with lowres

laserprinter fonts, because you can have several

virtual fonts sharing a common tfm �le. Suppose,

for example, that you want to typeset camera copy

on an APS machine using Univers as the ultimate

font, but you want to do proofreading with a screen

previewer and with a laserprinter. Suppose further

that you don't have Univers for your laserprinter;

the closest you have is Helvetica. And suppose that

you haven't even got Helvetica for your screen,

but you do have cmss10. Here's what you can

do: First make a virtual property list (vpl) �le

univers-aps.vpl that describes the high-quality

font of your ultimate output. Then edit that

�le into univers-laser.vpl, which has identical

font metric info but maps the characters into

Helvetica; similarly, make univers-screen.vpl,

which maps them into cmss10. Now run VPtoVF

on each of the three vpl �les. This will

produce three identical tfm �les univers.tfm,

one of which you should put on the directory

read by T

E

X. You'll also get three distinct

vf �les called univers.vf, which you should

put on three di�erent directories|one directory

for your DVI-to-APS software, another for your

DVI-to-laserwriter software, and the third for the

DVI-to-screen previewer. Voil�a.

So virtual fonts are evidently quite virtuous.

But what exactly are virtual fonts, detail-wise?

Appended to this message are excerpts from

VFtoVP.web and VPtoVF.web, which give a complete

de�nition of the vf and vpl �le formats.

I fully expect that all people who have

implemented dvi drivers will immediately see the

great potential of virtual fonts, and that they will be

unable to resist installing a vf capability into their

own software during the �rst few months of 1990.

(The idea is this: For each font speci�ed in a dvi

�le, the software looks �rst in a special table to see

if the font is device-resident (in which case the tfm

�le is loaded, to get the character widths); failing

that, it looks for a suitable gf or pk �le; failing that,

it looks for a vf �le, which may in turn lead to other

actual or virtual �les. The latter �les should not be

loaded immediately, but only on demand, because

the process is recursive. Incidentally, if no resident

or gf or pk or vf �le is found, a tfm �le should be

loaded as a last resort, so that the characters can be

left blank with appropriate widths.)

1994 GUST, Zeszyt 3 15

An Excerpt from VFtoVP.web

6. Virtual fonts. The idea behind VF �les is that a general interface mechanism is needed to

switch between the myriad font layouts provided by di�erent suppliers of typesetting equipment.

Without such a mechanism, people must go to great lengths writing inscrutable macros whenever

they want to use typesetting conventions based on one font layout in connection with actual

fonts that have another layout. This puts an extra burden on the typesetting system, interfering

with the other things it needs to do (like kerning, hyphenation, and ligature formation).

These di�culties go away when we have a \virtual font," i.e., a font that exists in a logical

sense but not a physical sense. A typesetting system like T

E

X can do its job without knowing

where the actual characters come from; a device driver can then do its job by letting a VF �le

tell what actual characters correspond to the characters T

E

X imagined were present. The actual

characters can be shifted and/or magni�ed and/or combined with other characters from many

di�erent fonts. A virtual font can even make use of characters from virtual fonts, including itself.

Virtual fonts also allow convenient character substitutions for proofreading purposes, when

fonts designed for one output device are unavailable on another.

7. A VF �le is organized as a stream of 8-bit bytes, using conventions borrowed from DVI and

PK �les. Thus, a device driver that knows about DVI and PK format will already contain most of

the mechanisms necessary to process VF �les. We shall assume that DVI format is understood;

the conventions in the DVI documentation (see, for example, T

E

X: The Program, part 31) are

adopted here to de�ne VF format.

A preamble appears at the beginning, followed by a sequence of character de�nitions, followed

by a postamble. More precisely, the �rst byte of every VF �le must be the �rst byte of the

following \preamble command":

pre

247 i[1] k[1] x[k] cs [4] ds [4]. Here i is the identi�cation byte of VF, currently 202. The string

x is merely a comment, usually indicating the source of the VF �le. Parameters cs and ds are

respectively the check sum and the design size of the virtual font; they should match the �rst

two words in the header of the TFM �le, as described below.

After the pre command, the preamble continues with font de�nitions; every font needed to

specify \actual" characters in later set char commands is de�ned here. The font de�nitions are

exactly the same in VF �les as they are in DVI �les, except that the scaled size s is relative and

the design size d is absolute:

fnt def1

243 k[1] c[4] s[4] d[4] a[1] l[1] n[a+ l]. De�ne font k, where 0 � k < 256.

fnt def2

244 k[2] c[4] s[4] d[4] a[1] l[1] n[a+ l]. De�ne font k, where 0 � k < 65536.

fnt def3

245 k[3] c[4] s[4] d[4] a[1] l[1] n[a+ l]. De�ne font k, where 0 � k < 2

24

.

fnt def4

246 k[4] c[4] s[4] d[4] a[1] l[1] n[a+ l]. De�ne font k, where �2

31

� k < 2

31

.

These font numbers k are \local"; they have no relation to font numbers de�ned in the DVI �le

that uses this virtual font. The dimension s, which represents the scaled size of the local font

being de�ned, is a �x word relative to the design size of the virtual font. Thus if the local font

is to be used at the same size as the design size of the virtual font itself, s will be the integer

value 2

20

. The value of s must be positive and less than 2

24

(thus less than 16 when considered

16 GUST, Zeszyt 3 1994

as a �x word). The dimension d is a �x word in units of printer's points; hence it is identical

to the design size found in the corresponding TFM �le.

de�ne id byte = 202

hGlobals in the outer block 7 i �

vf �le : packed �le of 0 : : 255;

See also sections 10, 12, 20, 23, 26, 29, 30, 37, 42, 49, 51, 54, 67, 69, 85, 87, 111, and 123.

This code is used in section 2.

8. The preamble is followed by zero or more character packets, where each character packet

begins with a byte that is < 243. Character packets have two formats, one long and one short:

long char

242 pl [4] cc [4] tfm [4] dvi [pl]. This long form speci�es a virtual character in the general case.

short char0 : : short char241 pl [1] cc [1] tfm [3] dvi [pl]. This short form speci�es a virtual

character in the common case when 0 � pl < 242 and 0 � cc < 256 and 0 � tfm < 2

24

.

Here pl denotes the packet length following the tfm value; cc is the character code; and tfm is

the character width copied from the TFM �le for this virtual font. There should be at most one

character packet having any given cc code.

The dvi bytes are a sequence of complete DVI commands, properly nested with respect to

push and pop . All DVI operations are permitted except bop , eop , and commands with opcodes

� 243. Font selection commands (fnt num0 through fnt4) must refer to fonts de�ned in the

preamble.

Dimensions that appear in the DVI instructions are analogous to �x word quantities; i.e.,

they are integer multiples of 2

�20

times the design size of the virtual font. For example, if

the virtual font has design size 10pt, the DVI command to move down 5pt would be a down

instruction with parameter 2

19

. The virtual font itself might be used at a di�erent size, say

12pt; then that down instruction would move down 6pt instead. Each dimension must be less

than 2

24

in absolute value.

Device drivers processing VF �les treat the sequences of dvi bytes as subroutines or macros,

implicitly enclosing them with push and pop . Each subroutine begins with w = x = y = z = 0,

and with current font f the number of the �rst-de�ned in the preamble (unde�ned if there's

no such font). After the dvi commands have been performed, the h and v position registers of

DVI format and the current font f are restored to their former values; then, if the subroutine

has been invoked by a set char or set command, h is increased by the TFM width (properly

scaled)|just as if a simple character had been typeset.

de�ne long char = 242 f VF command for general character packet g

de�ne set char 0 = 0 f DVI command to typeset character 0 and move right g

de�ne set1 = 128 f typeset a character and move right g

de�ne set rule = 132 f typeset a rule and move right g

de�ne put1 = 133 f typeset a character g

de�ne put rule = 137 f typeset a rule g

de�ne nop = 138 fno operation g

de�ne push = 141 f save the current positions g

de�ne pop = 142 f restore previous positions g

de�ne right1 = 143 fmove right g

de�ne w0 = 147 fmove right by w g

de�ne w1 = 148 fmove right and set w g

de�ne x0 = 152 fmove right by x g

de�ne x1 = 153 fmove right and set x g

de�ne down1 = 157 fmove down g

1994 GUST, Zeszyt 3 17

de�ne y0 = 161 fmove down by y g

de�ne y1 = 162 fmove down and set y g

de�ne z0 = 166 fmove down by z g

de�ne z1 = 167 fmove down and set z g

de�ne fnt num 0 = 171 f set current font to 0 g

de�ne fnt1 = 235 f set current font g

de�ne xxx1 = 239 f extension to DVI primitives g

de�ne xxx4 = 242 fpotentially long extension to DVI primitives g

de�ne fnt def1 = 243 fde�ne the meaning of a font number g

de�ne pre = 247 fpreamble g

de�ne post = 248 fpostamble beginning g

de�ne improper DVI for VF � 139; 140; 243; 244; 245; 246; 247; 248; 249; 250; 251; 252; 253;

254; 255

9. The character packets are followed by a trivial postamble, consisting of one or more bytes

all equal to post (248). The total number of bytes in the �le should be a multiple of 4.

And Here's an Extract from VPtoVF.web

5. Property list description of font metric data. The idea behind VPL �les is that

precise details about fonts, i.e., the facts that are needed by typesetting routines like T

E

X,

sometimes have to be supplied by hand. The nested property-list format provides a reasonably

convenient way to do this.

A good deal of computation is necessary to parse and process a VPL �le, so it would be

inappropriate for T

E

X itself to do this every time it loads a font. T

E

X deals only with the

compact descriptions of font metric data that appear in TFM �les. Such data is so compact,

however, it is almost impossible for anybody but a computer to read it.

Device drivers also need a compact way to describe mappings from T

E

X's idea of a font to

the actual characters a device can produce. They can do this conveniently when given a packed

sequence of bytes called a VF �le.

The purpose of VPtoVF is to convert from a human-oriented �le of text to computer-oriented

�les of binary numbers. There's a companion program, VFtoVP, which goes the other way.

hGlobals in the outer block 5 i �

vpl �le : text ;

See also sections 21, 24, 27, 29, 31, 36, 44, 46, 47, 52, 67, 75, 77, 82, 86, 89, 91, 113, 123, 138, 143, 147, 158, 161,

167, and 175.

This code is used in section 2.

6. h Set initial values 6 i �

reset (vpl �le);

See also sections 22, 26, 28, 30, 32, 45, 49, 68, 80, 84, and 148.

This code is used in section 2.

7. A VPL �le is like a PL �le with a few extra features, so we can begin to de�ne it by reviewing

the de�nition of PL �les. The material in the next few sections is copied from the program

PLtoTF.

A PL �le is a list of entries of the form

(PROPERTYNAME VALUE)

18 GUST, Zeszyt 3 1994

where the property name is one of a �nite set of names understood by this program, and the

value may itself in turn be a property list. The idea is best understood by looking at an example,

so let's consider a fragment of the PL �le for a hypothetical font.

(FAMILY NOVA)

(FACE F MIE)

(CODINGSCHEME ASCII)

(DESIGNSIZE D 10)

(DESIGNUNITS D 18)

(COMMENT A COMMENT IS IGNORED)

(COMMENT (EXCEPT THIS ONE ISN'T))

(COMMENT (ACTUALLY IT IS, EVEN THOUGH

IT SAYS IT ISN'T))

(FONTDIMEN

(SLANT R -.25)

(SPACE D 6)

(SHRINK D 2)

(STRETCH D 3)

(XHEIGHT R 10.55)

(QUAD D 18)

)

(LIGTABLE

(LABEL C f)

(LIG C f O 200)

(SKIP D 1)

(LABEL O 200)

(LIG C i O 201)

(KRN O 51 R 1.5)

(/LIG C ? C f)

(STOP)

)

(CHARACTER C f

(CHARWD D 6)

(CHARHT R 13.5)

(CHARIC R 1.5)

)

This example says that the font whose metric information is being described belongs to the

hypothetical NOVA family; its face code is medium italic extended; and the characters appear in

ASCII code positions. The design size is 10 points, and all other sizes in this PL �le are given in

units such that 18 units equals the design size. The font is slanted with a slope of �:25 (hence

the letters actually slant backward|perhaps that is why the family name is NOVA). The normal

space between words is 6 units (i.e., one third of the 18-unit design size), with glue that shrinks

by 2 units or stretches by 3. The letters for which accents don't need to be raised or lowered

are 10.55 units high, and one em equals 18 units.

The example ligature table is a bit trickier. It speci�es that the letter f followed by another f

is changed to code �200 , while code �200 followed by i is changed to �201 ; presumably codes

�200 and �201 represent the ligatures `�' and `�'. Moreover, in both cases f and �200 , if the

following character is the code �51 (which is a right parenthesis), an additional 1.5 units of

space should be inserted before the �51 . (The `SKIP D 1' skips over one LIG or KRN command,

which in this case is the second LIG; in this way two di�erent ligature/kern programs can come

1994 GUST, Zeszyt 3 19

together.) Finally, if either f or �200 is followed by a question mark, the question mark is

replaced by f and the ligature program is started over. (Thus, the character pair `f?' would

actually become the ligature `�', and `ff?' or `f?f' would become `�f'. To avoid this restart

procedure, the /LIG command could be replaced by /LIG>; then `f? would become `ff' and `f?f'

would become `f�'.)

Character f itself is 6 units wide and 13.5 units tall, in this example. Its depth is zero (since

CHARDP is not given), and its italic correction is 1.5 units.

8. The example above illustrates most of the features found in PL �les. Note that some

property names, like FAMILY or COMMENT, take a string as their value; this string continues until

the �rst unmatched right parenthesis. But most property names, like DESIGNSIZE and SLANT

and LABEL, take a number as their value. This number can be expressed in a variety of ways,

indicated by a pre�xed code; D stands for decimal, H for hexadecimal, O for octal, R for real, C

for character, and F for \face." Other property names, like LIG, take two numbers as their value.

And still other names, like FONTDIMEN and LIGTABLE and CHARACTER, have more complicated

values that involve property lists.

A property name is supposed to be used only in an appropriate property list. For example,

CHARWD shouldn't occur on the outer level or within FONTDIMEN.

The individual property-and-value pairs in a property list can appear in any order. For

instance, `SHRINK' precedes `STRETCH' in the above example, although the TFM �le always puts

the stretch parameter �rst. One could even give the information about characters like `f' before

specifying the number of units in the design size, or before specifying the ligature and kerning

table. However, the LIGTABLE itself is an exception to this rule; the individual elements of the

LIGTABLE property list can be reordered only to a certain extent without changing the meaning

of that table.

If property-and-value pairs are omitted, a default value is used. For example, we have already

noted that the default for CHARDP is zero. The default for every numeric value is, in fact, zero,

unless otherwise stated below.

If the same property name is used more than once, VPtoVF will not notice the discrepancy;

it simply uses the �nal value given. Once again, however, the LIGTABLE is an exception to this

rule; VPtoVF will complain if there is more than one label for some character. And of course

many of the entries in the LIGTABLE property list have the same property name.

9. A VPL �le also includes information about how to create each character, by typesetting

characters from other fonts and/or by drawing lines, etc. Such information is the value of the

`MAP' property, which can be illustrated as follows:

(MAPFONT D 0 (FONTNAME Times-Roman))

(MAPFONT D 1 (FONTNAME Symbol))

(MAPFONT D 2 (FONTNAME cmr10)(FONTAT D 20))

(CHARACTER O 0 (MAP (SELECTFONT D 1)(SETCHAR C G)))

(CHARACTER O 76 (MAP (SETCHAR O 277)))

(CHARACTER D 197 (MAP

(PUSH)(SETCHAR C A)(POP)

(MOVEUP R 0.937)(MOVERIGHT R 1.5)(SETCHAR O 312)))

(CHARACTER O 200 (MAP (MOVEDOWN R 2.1)(SETRULE R 1 R 8)))

(CHARACTER O 201 (MAP

(SPECIAL ps: /SaveGray currentgray def .5 setgray)

(SELECTFONT D 2)(SETCHAR C A)

(SPECIAL ps: SaveGray setgray)))

20 GUST, Zeszyt 3 1994

(These speci�cations appear in addition to the conventional PL information. The MAP attribute

can be mixed in with other attributes like CHARWD or it can be given separately.)

In this example, the virtual font is composed of characters that can be fabricated from three

actual fonts, `Times-Roman', `Symbol', and `cmr10 at 20\u' (where \u is the unit size in this

VPL �le). Character �0 is typeset as a `G' from the symbol font. Character �76 is typeset as

character �277 from the ordinary Times font. (If no other font is selected, font number 0 is the

default. If no MAP attribute is given, the default map is a character of the same number in the

default font.)

Character 197 (decimal) is more interesting: First an A is typeset (in the default font Times),

and this is enclosed by PUSH and POP so that the original position is restored. Then the accent

character �312 is typeset, after moving up .937 units and right 1.5 units.

To typeset character �200 in this virtual font, we move down 2.1 units, then typeset a rule

that is 1 unit high and 8 units wide.

Finally, to typeset character �201 , we do something that requires a special ability to interpret

PostScript commands; this example sets the PostScript \color" to 50% gray and typesets an `A'

from cmr10 in that color.

In general, the MAP attribute of a virtual character can be any sequence of typesetting

commands that might appear in a page of a DVI �le. A single character might map into an

entire page.

10. But instead of relying on a hypothetical example, let's consider a complete grammar for

VPL �les, beginning with the (unchanged) grammatical rules for PL �les. At the outer level, the

following property names are valid in any PL �le:

CHECKSUM (four-byte value). The value, which should be a nonnegative integer less than 2

32

, is

used to identify a particular version of a font; it should match the check sum value stored

with the font itself. An explicit check sum of zero is used to bypass check sum testing. If

no checksum is speci�ed in the VPL �le, VPtoVF will compute the checksum that METAFONT

would compute from the same data.

DESIGNSIZE (numeric value, default is 10). The value, which should be a real number in the range

1:0 � x < 2048, represents the default amount by which all quantities will be scaled if the font

is not loaded with an `at' speci�cation. For example, if one says `\font\A=cmr10 at 15pt' in

T

E

X language, the design size in the TFM �le is ignored and e�ectively replaced by 15 points;

but if one simply says `\font\A=cmr10' the stated design size is used. This quantity is always

in units of printer's points.

DESIGNUNITS (numeric value, default is 1). The value should be a positive real number; it says

how many units equals the design size (or the eventual `at' size, if the font is being scaled).

For example, suppose you have a font that has been digitized with 600 pixels per em, and the

design size is one em; then you could say `(DESIGNUNITS R 600)' if you wanted to give all of

your measurements in units of pixels.

CODINGSCHEME (string value, default is `UNSPECIFIED'). The string should not contain par-

entheses, and its length must be less than 40. It identi�es the correspondence between the

numeric codes and font characters. (T

E

X ignores this information, but other software programs

make use of it.)

FAMILY (string value, default is `UNSPECIFIED'). The string should not contain parentheses,

and its length must be less than 20. It identi�es the name of the family to which this font

belongs, e.g., `HELVETICA'. (T

E

X ignores this information; but it is needed, for example, when

converting DVI �les to PRESS �les for Xerox equipment.)

FACE (one-byte value). This number, which must lie between 0 and 255 inclusive, is a subsidiary

identi�cation of the font within its family. For example, bold italic condensed fonts might

1994 GUST, Zeszyt 3 21

have the same family name as light roman extended fonts, di�ering only in their face byte.

(T

E

X ignores this information; but it is needed, for example, when converting DVI �les to

PRESS �les for Xerox equipment.)

SEVENBITSAFEFLAG (string value, default is `FALSE'). The value should start with either `T'

(true) or `F' (false). If true, character codes less than 128 cannot lead to codes of 128 or more

via ligatures or charlists or extensible characters. (T

E

X82 ignores this ag, but older versions

of T

E

X would only accept TFM �les that were seven-bit safe.) VPtoVF computes the correct

value of this ag and gives an error message only if a claimed \true" value is incorrect.

HEADER (a one-byte value followed by a four-byte value). The one-byte value should be between

18 and a maximum limit that can be raised or lowered depending on the compile-time setting

of max header bytes . The four-byte value goes into the header word whose index is the

one-byte value; for example, to set header [18] 1, one may write `(HEADER D 18 O 1)'.

This notation is used for header information that is presently unnamed. (T

E

X ignores it.)

FONTDIMEN (property list value). See below for the names allowed in this property list.

LIGTABLE (property list value). See below for the rules about this special kind of property list.

BOUNDARYCHAR (one-byte value). If this character appears in a LIGTABLE command, it matches

\end of word" as well as itself. If no boundary character is given and no LABEL BOUNDARYCHAR

occurs within LIGTABLE, word boundaries will not a�ect ligatures or kerning.

CHARACTER. The value is a one-byte integer followed by a property list. The integer represents

the number of a character that is present in the font; the property list of a character is de�ned

below. The default is an empty property list.

11. Numeric property list values can be given in various forms identi�ed by a pre�xed letter.

C denotes an ASCII character, which should be a standard visible character that is not a

parenthesis. The numeric value will therefore be between �41 and �176 but not �50 or �51 .

D denotes an unsigned decimal integer, which must be less than 2

32

, i.e., at most `D 4294967295'.

F denotes a three-letter Xerox face code; the admissible codes are MRR, MIR, BRR, BIR, LRR, LIR,

MRC, MIC, BRC, BIC, LRC, LIC, MRE, MIE, BRE, BIE, LRE, and LIE, denoting the integers 0 to 17,

respectively.

O denotes an unsigned octal integer, which must be less than 2

32

, i.e., at most `O 37777777777'.

H denotes an unsigned hexadecimal integer, which must be less than 2

32

, i.e., at most

`H FFFFFFFF'.

R denotes a real number in decimal notation, optionally preceded by a `+' or `-' sign, and

optionally including a decimal point. The absolute value must be less than 2048.

12. The property names allowed in a FONTDIMEN property list correspond to various T

E

X

parameters, each of which has a (real) numeric value. All of the parameters except SLANT are

in design units. The admissible names are SLANT, SPACE, STRETCH, SHRINK, XHEIGHT, QUAD,

EXTRASPACE, NUM1, NUM2, NUM3, DENOM1, DENOM2, SUP1, SUP2, SUP3, SUB1, SUB2, SUPDROP,

SUBDROP, DELIM1, DELIM2, and AXISHEIGHT, for parameters 1 to 22. The alternate names

DEFAULTRULETHICKNESS, BIGOPSPACING1, BIGOPSPACING2, BIGOPSPACING3, BIGOPSPACING4,

and BIGOPSPACING5, may also be used for parameters 8 to 13.

The notation `PARAMETER n' provides another way to specify the nth parameter; for example,

`(PARAMETER D 1 R -.25)' is another way to specify that the SLANT is �0:25. The value of n

must be positive and less than max param words .

22 GUST, Zeszyt 3 1994

13. The elements of a CHARACTER property list can be of six di�erent types.

CHARWD (real value) denotes the character's width in design units.

CHARHT (real value) denotes the character's height in design units.

CHARDP (real value) denotes the character's depth in design units.

CHARIC (real value) denotes the character's italic correction in design units.

NEXTLARGER (one-byte value), speci�es the character that follows the present one in a \charlist."

The value must be the number of a character in the font, and there must be no in�nite cycles

of supposedly larger and larger characters.

VARCHAR (property list value), speci�es an extensible character. This option and NEXTLARGER

are mutually exclusive; i.e., they cannot both be used within the same CHARACTER list.

The elements of a VARCHAR property list are either TOP, MID, BOT or REP; the values are integers,

which must be zero or the number or a character in the font. A zero value for TOP, MID, or BOT

means that the corresponding piece of the extensible character is absent. A nonzero value, or

a REP value of zero, denotes the character code used to make up the top, middle, bottom, or

replicated piece of an extensible character.

14. A LIGTABLE property list contains elements of four kinds, specifying a program in a simple

command language that T

E

X uses for ligatures and kerns. If several LIGTABLE lists appear, they

are e�ectively concatenated into a single list.

LABEL (one-byte value) means that the program for the stated character value starts here. The

integer must be the number of a character in the font; its CHARACTER property list must not

have a NEXTLARGER or VARCHAR �eld. At least one LIG or KRN step must follow.

LABEL BOUNDARYCHAR means that the program for beginning-of-word ligatures starts here.

LIG (two one-byte values). The instruction `(LIG c r)' means, \If the next character is c, then

insert character r and possibly delete the current character and/or c; otherwise go on to the

next instruction." Characters r and c must be present in the font. LIG may be immediately

preceded or followed by a slash, and then immediately followed by > characters not exceeding

the number of slashes. Thus there are eight possible forms:

LIG /LIG /LIG> LIG/ LIG/> /LIG/ /LIG/> /LIG/>>

The slashes specify retention of the left or right original character; the > signs specify passing

over the result without further ligature processing.

KRN (a one-byte value and a real value). The instruction `(KRN c r)' means, \If the next character

is c, then insert a blank space of width r between the current character character and c;

otherwise go on to the next intruction." The value of r, which is in units of the design size,

is often negative. Character code c must exist in the font.

STOP (no value). This instruction ends a ligature/kern program. It must follow either a LIG or

KRN instruction, not a LABEL or STOP or SKIP.

SKIP (value in the range 0 : : 127). This instruction speci�es continuation of a ligature/kern

program after the speci�ed number of LIG or KRN has been skipped over. The number of

subsequent LIG and KRN instructions must therefore exceed this speci�ed amount.

15. In addition to all these possibilities, the property name COMMENT is allowed in any property

list. Such comments are ignored.

16. So that is what PL �les hold. In a VPL �le additional properties are recognized; two of

these are valid on the outermost level:

VTITLE (string value, default is empty). The value will be reproduced at the beginning of the

VF �le (and printed on the terminal by VFtoVP when it examines that �le).

1994 GUST, Zeszyt 3 23

MAPFONT. The value is a nonnegative integer followed by a property list. The integer represents

an identifying number for fonts used in MAP attributes. The property list, which identi�es the

font and relative size, is de�ned below.

And one additional \virtual property" is valid within a CHARACTER:

MAP. The value is a property list consisting of typesetting commands. Default is the single

command SETCHAR c, where c is the current character number.

17. The elements of a MAPFONT property list can be of the following types.

FONTNAME (string value, default is NULL). This is the font's identifying name.

FONTAREA (string value, default is empty). If the font appears in a nonstandard directory,

according to local conventions, the directory name is given here. (This is system dependent,

just as in DVI �les.)

FONTCHECKSUM (four-byte value, default is zero). This value, which should be a nonnegative

integer less than 2

32

, can be used to check that the font being referred to matches the

intended font. If nonzero, it should equal the CHECKSUM parameter in that font.

FONTAT (numeric value, default is the DESIGNUNITS of the present virtual font). This value is

relative to the design units of the present virtual font, hence it will be scaled when the virtual

font is magni�ed or reduced. It represents the value that will e�ectively replace the design

size of the font being referred to, so that all characters will be scaled appropriately.

FONTDSIZE (numeric value, default is 10). This value is absolute, in units of printer's points. It

should equal the DESIGNSIZE parameter in the font being referred to.

If any of the string values contain parentheses, the parentheses must be balanced. Leading

blanks are removed from the strings, but trailing blanks are not.

18. Finally, the elements of a MAP property list are an ordered sequence of typesetting

commands chosen from among the following:

SELECTFONT (four-byte integer value). The value must be the number of a previously de�ned

MAPFONT. This font (or more precisely, the �nal font that is mapped to that code number, if

two MAPFONT properties happen to specify the same code) will be used in subsequent SETCHAR

instructions until overridden by another SELECTFONT. The �rst-speci�ed MAPFONT is implicitly

selected before the �rst SELECTFONT in every character's map.

SETCHAR (one-byte integer value). There must be a character of this number in the currently

selected font. (VPtoVF doesn't check that the character is valid, but VFtoVP does.) That

character is typeset at the current position, and the typesetter moves right by the CHARWD in

that character's TFM �le.

SETRULE (two real values). The �rst value speci�es height, the second speci�es width, in design

units. If both height and width are positive, a rule is typeset at the current position. Then

the typesetter moves right, by the speci�ed width.

MOVERIGHT, MOVELEFT, MOVEUP, MOVEDOWN (real value). The typesetter moves its current position

by the number of design units speci�ed.

PUSH The current typesetter position is remembered, to be restored on a subsequent POP.

POP The current typesetter position is reset to where it was on the most recent unmatched PUSH.

The PUSH and POP commands in any MAP must be properly nested like balanced parentheses.

SPECIAL (string value). The subsequent characters, starting with the �rst nonblank and ending

just before the �rst `)' that has no matching `(', are interpreted according to local conventions

with the same system-dependent meaning as a `special' (xxx) command in a DVI �le.

SPECIALHEX (hexadecimal string value). The subsequent nonblank characters before the next `)'

must consist entirely of hexadecimal digits, and they must contain an even number of such

24 GUST, Zeszyt 3 1994

digits. Each pair of hex digits speci�es a byte, and this string of bytes is treated just as the

value of a SPECIAL. (This convention permits arbitrary byte strings to be represented in an

ordinary text �le.)

19. Virtual font mapping is a recursive process, like macro expansion. Thus, a MAPFONT might

specify another virtual font, whose characters are themselves mapped to other fonts. As an

example of this possibility, consider the following curious �le called recurse.vpl, which de�nes

a virtual font that is self-contained and self-referential:

(VTITLE Example of recursion)

(MAPFONT D 0 (FONTNAME recurse)(FONTAT D 2))

(CHARACTER C A (CHARWD D 1)(CHARHT D 1)(MAP (SETRULE D 1 D 1)))

(CHARACTER C B (CHARWD D 2)(CHARHT D 2)(MAP (SETCHAR C A)))

(CHARACTER C C (CHARWD D 4)(CHARHT D 4)(MAP (SETCHAR C B)))

The design size is 10 points (the default), hence the character A in font recurse is a 10 � 10

point black square. Character B is typeset as character A in recurse scaled 2000, hence it is a

20 � 20 point black square. And character C is typeset as character B in recurse scaled 2000,

hence its size is 40� 40.

Users are responsible for making sure that in�nite recursion doesn't happen.

